• 基于摩擦学理论,可将磨损机制分为磨粒磨损、黏着磨损、疲劳磨损和扩散磨损。实际磨损过程通常不是以单一形式出现的,而是几种不同的磨损形式的综合表现。磨损计算方法的建立必须考虑磨损现象的特征,这些特征与通常的强度破坏不相同。刀具破损主要来源于金属岩块相互作用和金属压碎区相互作用,相应的刀具磨损可分为直接磨损和二次磨损,直接磨损指刀具与完整岩块相互作用时产生的磨损,属于2个表面粗糙峰直接咬合引起的黏着磨损;二次磨损指夹在2个表面的破碎颗粒造成的刀具磨损,属于磨粒磨损中的三体磨损。同时滚刀破岩过程中,二次磨损也包括与相对滚动的摩擦表面接触形成的循环变化应力作用下的疲劳磨损。磨损机制中的扩散磨损主要是由于高温度场下化学元素交互运动引起,合金刀具工作温度相对较低,分子在界面间的交换比较缓慢,扩散磨损在刀具磨损中所占比例可以忽略,因此,刀具的磨损主要表现为:①岩土体中的硬质磨粒对刀刃表面进行磨削,在刀刃表面形成犁沟,表面产生多次变形,*终导致表面材料脱落;②硬质磨粒被垂直荷载压入刀刃表面产生塑性变形并形成黏着点,在切向荷载的作用下黏着点被剪断,附着于硬质颗粒表面脱落;③刀具与岩土接触时交变接触应力作用下的疲劳磨损断裂或脱落。因此,认为刀具磨损主要由磨粒磨损、黏着磨损和疲劳磨损组成,主要磨损机制。
    2023/03/06
  • 外界硬颗粒或者对磨表面上的硬突起物或粗糙峰在摩擦过程中引起表面材料脱落的现象,称为磨粒磨损。磨损提出了简易的磨粒磨损预测模型并推导计算。该模型符合以下假设:①磨粒磨损模型定量分析方法符合微观切削机理;②刀具材料的受压屈服强度不随时间变化:③磨粒为形状相同的圆锥体。若被磨材料的受压屈服极限为σs假设有B个圆锥体,圆锥体中心半角为β磨粒压入金属位置为h,载荷为W.投影面积为A,滑动距离为s,则W可表示为圆锥体单位滑动距离表面产生的磨粒磨损量Qabr,可表示为引入磨粒磨损系数k1,k1=K/tan(3),其中K为概率数,则式(2)可以改写为k1对刀具破损预测影响较大,该系数的取值与磨粒磨损的类型、尺寸和材料特性等因素有关。文献[17]中给出了一些学者通过试验得到的k1。提出刀具的磨粒磨损属于三体磨损,磨粒尺寸约为80μmn,本文计算选取磨粒磨损系数为4×10-3黏着磨损计算模型当摩擦副相对滑动时,由于黏着效应所形成结点发生剪切断裂,被剪切的材料或脱落成磨屑,或由一个表面迁移到另一个表面,此类磨损称为黏着磨损,又称咬合磨损。黏着磨损计算模型假设刀具材料的受压屈服强度不随时间变化;摩擦副之间的黏着结点作用面为以α为半径的圆,则每个黏着结点作用面的接触面积为πα2,W由若干个半径为α的相同微凸体承受,则当摩擦副产生相对滑动,且滑动时每个微凸体上产生的磨屑为半球形。因此,考虑到并非所有的黏着点都形成半球形的磨屑,引入黏着磨损常数k2,且k2≤1,则黏着磨损量Qadh可K2按不同的滑动材料组合和不同的摩擦条件在10-7~10-2波动。出刀具破岩的黏着磨损系数为3.09×10-6 疲劳磨损模型计算滚刀破岩主要是刀具挤压破碎岩体的过程。随着刀盘的旋转,滚刀一方面会随着刀盘旋转,另一方面绕自身中心轴自转。因此岩体针对滚刀上的点形成循环荷载作用,而疲劳磨损产生的*根本原因也是被磨材料承受的循环应力作用。
    2023/03/04
  • 刀具损伤类型刀具损伤主要分为2种类型:刀具摩擦磨损和刀具断裂损伤,刀具磨损又包括正常均匀磨损和异常磨损,其中正常均匀磨损是刀具磨损的主要形式,刀具表面受到岩土体表面及破碎颗粒的不断挤压摩擦,导致刀具表面材料的缓慢去除。正常磨损体现在盾构刀具的合金磨损程度较为均匀。而异常磨损则是刀具在不均匀受力状态下发生持续滑移时导致局部严重磨损现象,主要体现在滚刀的偏磨、弦磨,切刀刀刃崩落等。断裂损伤是刀具在高应力条件下受到较大块体冲击断裂或受到循环应力作用导致疲劳损伤的现象,如刀齿崩裂、刀体断裂等。刀具磨损分析刀具磨损的产生主要是由合金刀具与岩土体相互接触作用的结果,*终物体表面出现材料损失的现象,其本质是荷载反复作用下发生能量转换并产生能量耗散的过程。岩土体作用力对刀具做功,能量以3种形式耗散:刀具高温热能、刀具磨屑或断裂、刀具动能。其中第3种形式刀具动能的转换仅针对滚刀。磨损的外在表现是摩擦表面或界面行为,刀具界面受荷发生塑性变形,产生微观裂纹或裂痕,微观裂纹扩展产生磨屑或断裂。刀具磨损构成基于摩擦学理论,可将磨损机制分为磨粒磨损、黏着磨损、疲劳磨损和扩散磨损。实际磨损过程通常不是以单一形式出现的,而是几种不同的磨损形式的综合表现。磨损计算方法的建立必须考虑磨损现象的特征,这些特征与通常的强度破坏不相同。刀具磨损主要来源于金属岩块相互作用和金属压碎区相互作用,相应的刀具磨损可分为直接磨损和二次磨损,直接磨损指刀具与完整岩块相互作用时产生的磨损,属于2个表面粗糙峰直接咬合引起的黏着磨损;二次磨损指夹在2个表面的破碎颗粒造成的刀具磨损,属于磨粒磨损中的三体磨损。同时滚刀破岩过程中,二次磨损也包括与相对滚动的摩擦表面接触形成的循环变化应力作用下的疲劳磨损。磨损机制中的扩散磨损主要是由于高温度场下化学元素交互运动引起,合金刀具工作温度相对较低,分子在界面间的交换比较缓慢,扩散磨损在刀具磨损中所占比例可以忽略,因此,刀具的磨损主要表现为:①岩土体中的硬质磨粒对刀刃表面进行磨削,在刀刃表面形成犁沟,表面产生多次变形,*终导致表面材料脱落;②硬质磨粒被垂直荷载压入刀刃表面产生塑性变形并形成黏着点,在切向荷载的作用下黏着点被剪断,附着于硬质颗粒表面脱落;③刀具与岩土接触时交变接触应力作用下的疲劳磨损断裂或脱落。
    2023/03/04
  • 陶瓷刀具具有硬度高、耐磨性能好、耐热性和化学稳定性优良等特点,且不易与金属产生粘接。陶瓷刀具在数控加工中占有十分重要的地位,陶瓷刀具已成为高速切削及难加工材料加工的主要刀具之一。陶瓷刀具广泛应用于高速切削、干切削、硬切削以及难加工材料的切削加工。陶瓷刀具可以高效加工传统刀具根本不能加工的高硬材料,实现“以车代磨”;陶瓷刀具的*佳切削速度可以比硬质合金刀具高2~lO倍,从而大大提高了切削加工生产效率;陶瓷刀具材料使用的主要原料是地壳中*丰富的元素,因此,陶瓷刀具的推广应用对提高生产率、降低加工成本、节省战略性贵重金属具有十分重要的意义,也将极大促进切削技术的进步。⑴ 陶瓷刀具材料的种类陶瓷刀具材料种类一般可分为氧化铝基陶瓷、氮化硅基陶瓷、复合氮化硅一氧化铝基陶瓷三大类。其中以氧化铝基和氮化硅基陶瓷刀具材料应用*为广泛。氮化硅基陶瓷的性能更优越于氧化铝基陶瓷。⑵ 陶瓷刀具的性能、特点① 硬度高、耐磨性能好:陶瓷刀具的硬度虽然不及PCD和PCBN高,但大大高于硬质合金和高速钢刀具,达到93-95HRA。陶瓷刀具可以加工传统刀具难以加工的高硬材料,适合于高速切削和硬切削。② 耐高温、耐热性好:陶瓷刀具在1200℃以上的高温下仍能进行切削。陶瓷刀具具有很好的高温力学性能, A12O3陶瓷刀具的抗氧化性能特别好,切削刃即使处于赤热状态,也能连续使用。因此,陶瓷刀具可以实现干切削,从而可省去切削液。③ 化学稳定性好:陶瓷刀具不易与金属产生粘接,且耐腐蚀、化学稳定性好,可减小刀具的粘接磨损。④ 摩擦系数低:陶瓷刀具与金属的亲合力小,摩擦系数低,可降低切削力和切削温度。⑶ 陶瓷刀具有应用陶瓷是主要用于高速精加工和半精加工的刀具材料之一。刀具破损适用于切削加工各种铸铁(灰铸铁、球墨铸铁、可锻铸铁、冷硬铸铁、高合金耐磨铸铁)和钢材(碳素结构钢、合金结构钢、高强度钢、高锰钢、淬火钢等),也可用来切削铜合金、石墨、工程塑料和复合材料。
    2023/03/03
  • ① 天然金刚石刀具:天然金刚石作为切削刀具已有上百年的历史了,天然单晶金刚石刀具经过精细研磨,刃口能磨得极其锋利,刃口半径可达0.002μm,能实现超薄切削,可以加工出极高的工件精度和极低的表面粗糙度,是公认的、理想的和不能代替的超精密加工刀具。② PCD金刚石刀具:天然金刚石价格昂贵,金刚石广泛应用于切削加工的还是聚晶金刚石(PCD),自20世纪70年代初,采用高温高压合成技术制备的聚晶金刚石(Polycrystauine diamond,简称PCD刀片研制成功以后,在很多场合下天然金刚石刀具已经被人造聚晶金刚石所代替。PCD原料来源丰富,其价格只有天然金刚石的几十分之一至十几分之一。PCD刀具无法磨出极其锋利的刃口,加工的工件表面质量也不如天然金刚石,现在工业中还不能方便地制造带有断屑槽的PCD刀片。因此,PCD只能用于有色金属和非金属的精切,很难达到超精密镜面切削。③ CVD金刚石刀具:自从20世纪70年代末至80年代初,CVD金刚石技术在日本出现。CVD金刚石是指用化学气相沉积法(CVD)在异质基体(如硬质合金、陶瓷等)上合成金刚石膜,CVD金刚石具有与天然金刚石完全相同的结构和特性。刀具监控系统CVD金刚石的性能与天然金刚石相比十分接近,兼有天然单晶金刚石和聚晶金刚石(PCD)的优点,在一定程度上又克服了它们的不足。
    2023/03/03